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Abstract 

We investigate the behavior of ray trajectories and solutions of the wave equation of two dimensional billiard-like systems 
with ray splitting. By “ray splitting” we mean the phenomenon whereby a ray incident on a sharp bounda~ leads to two 
or more rays traveling away from the boundary (e.g. a transmitted my and a reflected ray). Billiard systems with the 
same overall shape, but with and without ray splitting boundaries present are examined and compared. It is found that, for 
the configurations considered, the level spacing distribution and the spectral rigidity for the case without ray splitting are 
intermediate between Poisson and Gaussian orthogonal ensemble (GOE) statistics, while the behavior with ray splitting is 
very close to GOE. 
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1. Introduction 

Quantum chaos focuses on the semi-classical, or 
short-wavelength, limit of a system described by wave 
mechanics [ t-31. In this limit the ray equations are 
just the equations of classical mechanics for the mo- 
tion of a particle. When the particle motion is chaotic, 
some very general results have been conjectured to 
hold, and the behavior of the system should display 
universal properties. In p~ticul~, the energy level dis- 
tribution is expected to be given by the Gaussian or- 
thogonal ensemble (GOE) if the system obeys an an- 
tiunit~~ry symmetry [ I ,4]. When the phase space con- 
sists of a mixture of chaotic orbits and KAM tori, 
the level distribution is intermediate between the in- 
tegrable case of Poisson statistics and the GOE case 

’ Psesent address: SFA Inco~orated, c/o Naval Research Labo- 

mxy, Code 7 13 1, Washington, DC., 20375, USA. 

[5]. At sufficiently short wavelengths, this transition 
is expected to be universal [5]. 

In this paper we consider systems for which the ray 
approximation may be considered to hold everywhere 
except at an interface where there is an abrupt change 
of some physical parameter. Examples of this type of 
system include a quantum particle in a box where the 
potential has a constant value in one region and jumps 
discontinuously to a different constant value in a sec- 

ond region [6], an optical system with two regions 
having different indices of refraction, a bounded elas- 
tic medium supporting both shear and compression 
waves [ 7,8], and a thin microwave cavity with a sud- 
den change in the cavity height. In this paper we use 
the thin microwave cavity (Fig. 1) as our model, but 
the other systems will have very similar behavior. For 
these systems the usual semi-classical approach is in- 
sufficient in that ray trajectories are complicated by 
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Fig. I. Microwave cavity with two regions of different thicknesses 
111 and 122. 

the need to take into account the reflection and trans- 
mission which occurs at the interface between the re- 
gions. 

Systems satisfying a wave equation and having hard 
boundaries exhibit a type of ray splitting when a ray 
incident on the boundary excites a so-called “creeping 
wave” [ 91. However, these creeping waves appear at 
higher order in the semiclassical expansion (higher 
order in (kd) -I, where k is the wavenumber and d is a 
typical length scale of the system), while ray splitting 
at an interface occurs at lowest order in (kd) -‘. In the 
present work we confine our attention to ray splitting 
at interfaces. 

Previous work [ 71 has shown that the presence of 
a ray splitting interface can increase the degree of 
chaotic behavior of suitably defined ray trajectories 
in cases where there is a mixed (chaotic and RAM) 
phase space in the absence of ray splitting. It is natural 
to ask whether this increase of ray chaos shows up in 
the quantum spectrum as a shift toward GOE and away 
from integrable (Poisson) statistics, In fact, Schuetz 
[ IO], following Berry 141, shows that the spectral 
rigidity, d(E), (to be defined below), should have the 
leading order behavior for the ray splitting case, 

A(l) = &In(Z) +0(l), (1) 

where LY is a constant of order unity which the analysis 
in Ref. [ lo] did not pin down. In the nonray splitting 
case considered by Berry, (Y is exactly unity, which is 
the correct leading order behavior for the GOE. The 
numerical results of the present work indicate that for 

systems with ray splitting the spectral statistics are 
very close to GOE. Thus, when ray splitting is present, 
GOE statistics can be anticipated in a much wider class 
of system shapes than has been considered previously. 

2. Description of the model 

The model system we consider for numerical study 
is a microwave cavity made of a perfectly conducting 
material. The cavity is large compared to the typical 
wavelength in two dimensions, but small enough in 
the third dimension (which we take as the z direction) 
so that the electric field is constant in that direction. 
These waves are described by the z-component of the 
electric field (all other electric field components are 
zero), which satisfies the Helmholtz equation in two 
dimensions, 

( V2 + k2)E = 0, (2) 

where the wavenumber k is related to the resonant fre- 
quency w of the cavity by k = w/c, and c is the speed 
of light. The boundary conditions are that E = 0 at the 
sides of the cavity. Furthermore, we assume that the 
cavity consists of two regions of different thicknesses 
ht and hz in the z direction (Fig. I), with khl.2 > 1. 
The boundary conditions at the interface between the 
two regions are 

hiEr = h2E2, (3) 

n.VEt =n.VE2, (4) 

where II denotes the unit normal to the boundary. 
When constructing the semiclassical (ray) solu- 

tions of Eq. ( 1) one must consider the reflection and 
transmission of plane waves incident on a boundary 
such as that depicted in Fig. 1 which is approximated 
as being locally flat. Using the boundary conditions 
(3) and (4), the power reflection and transmission 
coefficients for a ray incident from region I to region 
2 are 

4r 

T= (1+r>2 

where r = hl //I*, (If the incident wave is in region 2, 
r should be replaced by 1 /r.) Note that, since Eq. (2) 
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applies in both regions 1 and 2, with the same value of 

k = w/c in both regions, the angle of incidence and the 
angle of transmission are the same. Thus, in contrast 
to a quantum particle in a box with different constant 
potentials in the two regions, there is no refraction of 

the transmitted wave. Fu~he~ore, the reflection and 
transmission coefficients are independent of the angle 
of incidence, so there is no total internal reflection for 

this system. This situation may be thought to represent 

the simplest possible case where ray splitting occurs. 
Another situation which has similar characteristics 

(i.e. absence of refraction at the interface), although 
with different boundary conditions on the ray splitting 

surface. occurs for Schrodinger’s equation with a po- 

tential that is a delta function of strength Vo on the ray 

splitting surface. Here the bound~y conditions on the 

wave function become I,$ = $9 and n+V#r --rt*V$~ = 
V&I ,2. In what follows, with experimental realizabil- 
ity in mind, we shall use the microwave boundary con- 
ditions (2) and (3) rather than these quantum bound- 

ary conditions. 

3. Classical ray mechanics 

When there is no ray splitting, the ray approxima- 
tion to Eq. (2) gives a billiard in twodimensions, with 
specular reflection at the boundary. For the ray split- 
ting case, we can think about the classical dynamics 
in the following way: when the particle strikes one 

of the outer edges it is specularly reflected, but when 
it strikes an interface between regions with different 

physical properties it has a probability R of being re- 
flected and a probability T of being transmitted, where 

R and T are the reflection and transmission coefficients 
from Eqs. (5)) (6). When the ray hits the interface, we 

randomly choose whether it is reflected or transmit- 

ted, according to the probabilities R and T. Between 
bounces, the particle moves in a straight line. Thus a 
ray trajectory can be specified by listing the succes- 
sive points where the ray hits the side, and the angle 
at which it hits each time. (By a side we mean either 

an interface between hr and h2 regions or a perfectly 
reflecting billiard wall.) The resulting map preserves 
phase space area if we use as phase space coordinates 
the variables (g, 7)) defined as follows: cr is the dis- 

tance to the bounce point measured along the boundary 
from some arbitrary fixed reference point, normalized 

Fig. 2. Coordinates for the ray problem. s is the distance along 

the perimeter measured from an arbitrary reference point pu. 

D E s/perimeter, and T = COS(Y. 

Fig. 3. Cavity used in Sections 3 and 4 

to one, and r is the cosine of the angle between the 

momentum vector after the bounce and the counter- 
clockwise tangent to the boundary (see Fig. 2). In the 
ray splitting case, there are two pieces of phase space 

co~esponding to the two regions, and a ray hitting the 
interface is plotted in the region of phase space where 
it ends up after the random choice is made. 

Calculations were done for the particular billiard 

shown in Fig. 3. The right (top) side of the cavity is an 

arc of a circle of radius RI (R2) whose center lies on 
the x (y) axis. The circles meet at the point (a, h). The 
ray splitting interface is the dashed line from the ori- 

gin to (a, 6). For the results reported in this paper the 
parameters are RI = 20, R2 = 6.2, (a, b) = ( 1.6, 1) , 
r = Al/h2 = (4 - 1>2. For this configuration, if 
billiards with perfectly reflecting walls were formed 
for the shapes of each of the subregions, then there is 
mixed chaotic and KAM behavior, with a significant 
fraction of the phase space being occupied by KAM 
tori. This is exhibited in Fig. 4, where Fig. 4a corre- 
sponds to region 1 of Fig. 3 and Fig. 4b corresponds 
to region 2 of Fig. 3. Similarly, with ray splitting re- 
moved, Fig. 5a shows that the resulting billiard for the 
entire region also displays mixed KAM/chaotic be- 
havior. Fig. 5b demonstrates the effect of introducing 
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(b) 

Fig. 4. Classical ray trajectories for (a) region 1 and (b) region 2 

of the cavity shown in Fig. 3, considered as separate billiards. In 

both cases two orbits are plotted, one lying on a KAM torus ( 1000 

iterations of a single initial condition) and one chaotic orbit (20000 

iterations of a single initial condition). The discontinuous-looking 

behavior at certain values of v is caused by the comers of the 

billiard, where the tangent to the perimeter jumps discontinuously. 

ray splitting. The entire phase space becomes chaotic 
in the sense that the ray trajectory eventually visits ev- 
ery region of the phase space. Thus all of the KAM 
tori are destroyed by the ray splitting interface, in con- 
trast to the case that was studied in Ref. [ 71. 

The mechanism for the destruction of KAM tori is 
quite simple. Suppose a ray starts out on what would 
be a KAM torus if the ray splitting interface were ab- 
sent. If it hits the ray splitting interface, it can be trans- 
mitted, staying on the original torus, or be reflected 
into some new orbit. The new orbit could correspond 
to another KAM torus of the original billiard or to a 
chaotic orbit. A KAM torus which retains orbits for- 

Fig. 5. Classical ray trajectories for the whole cavity of Fig. 3 

(a) without ray splitting and (b) with ray splitting. The surface 

of section is taken to be the boundary of region 2. 

ever is thus only possible in the following circum- 
stances: if the torus never intersects the ray splitting 
surface, or if the portions of the KAM tori defined by 

the two subregions (assuming reflection) coincide for 
the part of phase space corresponding to the common 
boundary (e.g., when the region is a rectangle and the 
interface is parallel to one of the sides). For the case 
of Fig. 3 there are no such tori, and therefore all or- 
bits eventually feel the effects of the chaotic fraction 
of phase space. 

In cases where there is a critical angle for total inter- 

nal reflection, such as the Schrijdinger equation with 
regions of different constant potential, or the elastic 
medium considered in Ref. [ 71, a particular periodic 
orbit for one of the subregions may only hit the inter- 
face at angles greater than the critical angle. In such 
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cases the orbit is not split at the interface. Thus, there 

may be regions of phase space that retain RAM tori 
even when ray splitting is present. 

4. Chaotic case 

The wave properties of the billiards such as the one 

depicted in Fig. 3 may be discussed in terms of several 
statistical measures of the spectrum. These statistical 

measures are defined in terms of the level counting 
function N( k2), the number of resonant modes with 

wavenumber less than a given value k. Define an “un- 

folded” level counting function A(e) by fitting N( k2) 
with a quadratic function and then let the unfolded 

“energies” e; be defined by 

e; = ok: + bki -t c, (7) 

where n, b, and c are the fitting parameters. This gives 

an unfolded spectrum with unit level density if the 

resonant levels follow the expected Weyl distribution, 

N(k*) = -&k2 - &k. (8) 

where A is the area and P the perimeter of the re- 
gion. N( k2) is called the (smoothed) Ievel counting 

function. (It is shown in Ref. [ I 1 ] that this is the 
correct form of the Weyl formula for a region with 

Dirichlet boundary conditions on the outer boundary 
and boundary conditions of the form of Eqs. (3) and 

(4) on the ray splitting interface.) 

Numerical solution of Eq. (2) for the lowest 500 
resonant values of k* was accomplished using a mod- 
ified boundary element technique that we have devel- 

oped for this problem, described in detail in the Ap- 
pendix. 

The probability distribution of level spacings P(s) 
is defined so that P(s) ds is the probability that s, the 
normalized separation between neighboring values of 
k2, lies between s and sfds. To obtain s, the separation 
of neighboring values of k* is divided by dN( k2) /dk’, 

so that the average value of s is one. For integrable 

systems a Poisson distribution is expected [ 121, 

P(.s) = exp(-s). (9) 

The Brody distribution [ 13 1 is a one-parameter family 
of distributions given by 

Pp(s) = Ap@exp( -trs’+p), 

where the normalization is Ap = ( 1 + /3)(x. 

*= [r(~)]‘+~, 
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(10) 

(I11 

r is the gamma function, and /3 is the Brody param- 
eter. The Brody distribution interpolates between the 

Poisson distribution, p = 0, and the Wigner distribu- 

tion, /3 = 1 (which one expects to be valid for a com- 

pletely chaotic system), so that p can be used as a 
measure of how close a given distribution is to the two 
extremes: fully integrable or fully chaotic. We will use 

the Brody distribution as a convenient measure of the 

degree of chaoticity of the system. 

In the absence of ray splitting we expect to see 

statistics intermediate between Poisson and GOE [ 51, 
because of the mixed phase space evident in Fig. 5a. 

When ray splitting is present we expect to see purely 
GOE statistics since the phase space has become com- 
pletely chaotic (Fig. 5b). The level spacing distribu- 

tion in the absence of ray splitting is best fit with a 

Brody parameter of 0.42, clearly showing the effect 
of having a mixed phase space (Fig. 6a). When ray 
splitting is introduced (Fig. 6b) the Brody parameter 

becomes 0.97; very close to the expected value of I .O 

for the GOE spectrum. 
Another statistical measure of the resonance spec- 

trum is the spectral rigidity A(l) [ 14,2]. The spec- 
tral rigidity A(Z) is defined as the squared deviation 
of h(e) from the best-fitting straight line, integrated 
over an interval in e of length 1, and then averaged over 

a number of intervals of the same length. The numer- 
ical results for the spectra1 rigidity show a clear shift 
from intermediate statistics (Fig. 7a) to GOE statis- 
tics (Fig. 7b). 

Since many physical systems have some amount of 

ray splitting, and since ray splitting always tends to 
increase the amount of chaos in the system, our results 
suggest that GOE-like statistics should be found much 
more commonly (i.e., for a much less restricted class 
of shapes) than would be the case in the absence of 
ray splitting. 
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Fig. 6. Histogram of P(s) and the best fitting Brody distribution 
(dashed line) for the cavity of Fig. 3 (a) without ray splitting 
and (b) with ray splitting. 

5. Conclusions 

The model of ray splitting presented in this paper is 
a particularly straightforward one, in that there is no 

refraction or critical reflection, and the classical orbits 
are independent of energy. The model may be real- 
ized experimentally by a thin microwave cavity and 

thus is experimentally testable. (In quantum mechan- 
ics somewhat similar behavior is obtained with a delta 
function potential on the ray splitting surface.) 

We have shown how ray splitting causes the de- 
struction of KAM tori in the semi-classical picture. In 
the full wave solution we have demonstrated a cor- 
responding transition in the spectral statistics. In the 
absence of ray splitting, the classical phase space is 
mixed (RAM tori and chaotic regions) and the spec- 
tral statistics of the wave solution are intermediate 
between the statistics expected for an integrable sys- 
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Fig. 7. Specual rigidity for the cavity of Fig. 3 (a) without ray 
splitting and (b) with ray splitting. 

tern and those expected for a chaotic system. When 
ray splitting is introduced the KAM tori are destroyed 
and the spectral statistics become very close to the 

GOE statistics expected for a classically chaotic sys- 
tem. Thus with ray splitting GOE statistics is to be 

expected in a much broader class of billiard shapes. 
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Appendix A. Numerical procedure 

The solution of the Helmholtz equation (2) in the 
presence of ray splitting introduces some difficulties 

which are not present when only a single region is 

considered. The approach used here is based on the 
boundary element method, which has been discussed 

in textbooks on numerical techniques for partial differ- 

ential equations [ 151. Some of these texts discuss the 
problem of subregions, but we found the standard pro- 
cedure inadequate for our purposes. In this appendix 

we outline the modified procedure we used to obtain 
the results reported in this paper. 

An integral representation for the solution to the 

Helmholtz equation is obtained in the usual way by 

multiplying Eq. (2) by the appropriate Green func- 
tion and integrating the result over the region. This is 
done for each of the two (or more) regions separately. 

In our case the Green function is the same for both 

regions, and the reflection comes about solely from 
the boundary conditions at the interface, Eqs. (3)) and 

(4). For the derivation that follows we allow the two 
Green functions, Gr and G2, to be different. If El and 
El represent the solution to the Helmholtz equation in 

region I and 2, respectively, then the boundary inte- 

grals are 

EI (.a,) = 
i’ 

[EI (y)Vii(.v,G(~,~) 

s, 

- GI (~,J~)VF~(.,$I (y)l dy, (A.1) 

E2(-~1 = 
I’ 

[E~(Y)V~~(?.)G~(X,Y) 

i? 

- Gz(x,~)Vn(+%(y)l dy, (A.21 

where S1.2 are the boundaries to the two regions, in- 
cluding the interface, and Va(Y) is the normal deriva- 
tive evaluated at the point y. The “direct” method of 
solving these equations [ 151 is to discretize them, im- 

pose the boundary conditions (IQ. (3), and (4) to- 
gether with E = 0 on the exterior boundaries), and 
then search for values of k for which the determinant 
of the resulting matrix is zero. In this procedure the 
unknowns are the values of the normal derivative of 
El.2 on the exterior boundaries and the value of El 
and its normal derivative on the interface. Experience 
with the case of a single region indicates that it is bet- 

ter to introduce an auxiliary solution which allows all 

terms involving the Green function itself to be elimi- 
nated, leaving only terms involving its normal deriva- 
tive. This is preferable because the normal derivative 

is better behaved than the Green function in the coin- 
cidence limit y --+ X. In fact, our experience indicates 
that this “indirect” method is more accurate than the 

direct method by several orders of magnitude. It seems 
worthwhile, then, to develop a similar scheme for the 

case of two regions. 
Introduce auxiliary exterior solutions ,?r ,z which are 

taken to be zero inside the respective region, solve Eq. 
(2) in the exterior of the region, and have boundary 

conditions which we are free to choose as we like. 

These exterior solutions satisfy the same equations 

(A.2) except that the left-hand side is zero when x is 
a point in the interior of the respective region. Subtract 
the equations for Br .2 from those for El ,2. Defining 

Dl(y) = El(y) - &(.v), 

9 (Y) = Vec.41 (Y> - VA&I(V), 

we find 

(A.3) 

(A.4) 

.I [D,(y)V;(Y,G~(x,y) - P~(y)G(x,y)l dy 

$1 

= El(X), (A.5) 

I [D~(Y)V~~(!.)G~~X,Y) - f’2(~)G2(~,4’)1 dy 

=&(x). (A.6) 

Up to this point we have not imposed any boundary 
conditions. Let us denote the ray splitting interface 

by S,, and the remaining boundary of each region, 
excluding the interface, by 31 J, For El ,2 we have 

El(x) =O, X E .?,, (A.7) 

E2(x) = 0, x E j2, (A.8) 

and Eqs. (3) and (4) for x on the interface. Choose 
boundary conditions on 81.2 by setting 

P,(x) =o, x E $, (A.9) 

P2(x) =o, x E 32, (A.lO) 

Di(X) =o, x E s,, (A.11) 

&(x) = 0, x E s,. (A.12) 
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A count of the degrees of freedom reveafs that we are 
missing some equations. These are obtained by taking 
the normai derivative of Eqs. (A.@ with respect to X, 
for x E St. The resulting system of equations is 

o= I DI (Y)V~~,(!.)G(.GY) dy 

(A.13) 

0 = 
/ 

D2ty)Vfi(?l)G2tx,y) dy 

s, 
_ I’ f’2(y)G2(x,y) dy, x E $2, (A.14) 

+ [PIGS 
s 
s/ 

- rP~(yfG(xxy)l dy, .x E SI 

0 = 
$ 

DI (y)V;lri(n)V~(!.)G (KY> dy 

SI 

- 
.I 

D~(Y)V,,(~,‘~~~;O,)G~(X,Y) dy 

sz 

+ [Pz(Y)‘C7Mx)Gz(~,Y) J Sl - Pr(y)Vi,(,)G~(x,y)l dy, x E SI (A.18) 

This procedure has introduced the second derivative 

(A.15) 

(A.16) 

(A.17) 

of the Green function, but because of the particular 
choice of boundary conditions, Eq. (A. 12), the sec- 
ond derivative is never evaluated in the coincidence 
limit. The price we pay for this is that the terms where 
the Green function itself needs to be evaluated in the 
coincidence limit have not been entirely eliminate. 
However, this procedure does yield a significant im- 
provement in accuracy over the direct method. 

The solution follows by discretizing Eqs. (A.18) 
and searching for the values of the wavenumber, k, for 
which the determinant of the resulting matrix is zero. 
The numerical search is facilitated by the fact that the 
matrix involved contains blocks of zeroes, allowing a 
block LU decomposition. This procedure yields twice 
the actual number of eigenvalues, just as in the case of 
a single homogeneous region. The excess eigenvalues 
are eliminated using an auxiliary refractive index, in 
the same way as in that case [ 161. 
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